Mojca Bračič, Matjaž Kovše,
Uroš Milutinović, Matjaž Žunko

Matematični principi

Učno gradivo

Fakulteta za naravoslovje in matematiko

Univerza v Mariboru

2009
1 Osnovno o matematični logiki in množicah

1. Preberite naglas (po možnosti na več načinov):

(a) \{1, 2, 3\}
(b) \{1, 2, 3, 4, 5, 6\}
(c) \{1, 2, 3, 4, 5, 6, \ldots\}
(d) \{x \in \mathbb{N} : 1 \leq x \leq 6\}
(e) \{x \in \mathbb{N} : x < 7\}
(f) \{x \in \mathbb{R} : 3 < x < 7\}
(g) \{x \in \mathbb{R} : x^2 + 5x + 6 \leq 0\}
(h) \{x \in \mathbb{C} : x^{17} + 5x - 2 = 0\}
(i) \{(x, y) : x \in \mathbb{R} \& y \in \mathbb{R} \& x^2 + 5x - 2y^2 - y - 3 = 0\}
(j) \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}, x^2 + y^2 = 1\}
(k) \{(x, y) : x, y \in \mathbb{R}, y = e^x\}
(l) \{(x, y) \in \mathbb{R}^2 : \sin x + \cos y - 1 = 0\}
(m) \{x \in \mathcal{P}(\mathbb{N}) : \{1, 2\} \subseteq x \subseteq \{1, 2, 3, 4\}\}
(n) \{x \in \mathcal{P}(\mathbb{N}) : \{1, 2\} \supseteq x\}
(o) \{x \in \mathcal{P}(\mathbb{N}) : \{1, 2\} \subseteq x\}
(p) \{x \in \mathcal{P}(\mathbb{R}) : \{1, 2\} \subseteq x\}
(q) \{x \in \mathcal{P}(\mathbb{R}) : \{1, 2\} \supseteq x\}

2. Primerjajte med sabo naslednje množice; ugotovite število njihovih elementov:

(a) \emptyset
(b) \{\emptyset\}
(c) \emptyset \cup \{\emptyset\}
(d) \{x \in \mathbb{R} : x^2 + 1 = 0\}
(e) \{\emptyset, \emptyset\}
(f) \{\emptyset, \{\emptyset\}\}
(g) \{x \in \mathbb{R} : x^2 + 5x + 6 = 0\}
(h) \{x \in \mathbb{R} : x^2 + 5x - 2 = 0\}
(i) \{x \in \mathbb{Q} : x^2 + 5x - 2 = 0\}
(j) \{\{\emptyset\}\}
(k) \mathcal{P}(\emptyset)
(l) \mathcal{P}(\mathcal{P}(\emptyset))
(m) \mathcal{P}(\{\emptyset\})
(n) \mathcal{P}(\{x \in \mathbb{R} : x^2 + 5x + 6 = 0\})

3. Preberite naglas:

(a) \neg(\neg a) \iff a
(b) a \lor a \iff a, a \land a \iff a
(c) (a \lor b) \lor c \iff a \lor (b \lor c), (a \land b) \land c \iff a \land (b \land c)
(d) a \lor b \iff b \lor a, a \land b \iff b \land a
(e) a \lor (b \land c) \iff (a \lor b) \land (a \lor c), a \land (b \lor c) \iff (a \land b) \lor (a \land c)
(f) \((a \lor b) \iff (\neg a \land \neg b) \iff (a \land b) \iff (\neg a \lor \neg b) \)

(g) \((a \Rightarrow b) \iff (\neg a \lor b) \)

(h) \((a \Rightarrow b) \iff (a \land \neg b) \)

(i) \((a \Leftarrow b) \iff ((a \Rightarrow b) \land (b \Rightarrow a)) \)

4. Preberite naglas (po možnosti na več načinov):

(a) \(\forall x, x + 0 = x \)

(b) \(\forall x \in \mathbb{R}, x + 0 = x \)

(c) \(\forall x, \exists y, x + y = 0 \)

(d) \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 0 \)

(e) \(\forall x, \forall y, \forall z, x + (y + z) = (x + y) + z \)

(f) \(\forall x \in \mathbb{C}, \forall y \in \mathbb{C}, \forall z \in \mathbb{C}, x + (y + z) = (x + y) + z \)

(g) \(\forall x, y, z \in \mathbb{C}, x + (y + z) = (x + y) + z \)

(h) \(\forall x, \forall y, x + y = y + x, \)

(i) \(\forall x \in \mathbb{C}, \forall y \in \mathbb{C}, x + y = y + x \)

(j) \(\forall n \in \mathbb{N}, \forall x, \exists y, ny = x \)

(k) \(\forall n \in \mathbb{N}, \forall x \in G, \exists y, ny = x \)

(l) \(\forall n \in \mathbb{N}, \forall x, x \neq 0 \Rightarrow nx \neq 0 \)

(m) \(\forall n \in \mathbb{N}, \forall x \in G, x \neq 0 \Rightarrow nx \neq 0 \)

(n) \(\forall x, \exists n \in \mathbb{N}, nx = 0 \)

(o) \(\forall x \in G, \exists n \in \mathbb{N}, nx = 0 \)

(p) \(\forall x, \forall y, x \cdot y = 0 \Rightarrow (x = 0 \lor y = 0) \)

(q) \(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x \cdot y = 0 \Rightarrow (x = 0 \lor y = 0) \)

(r) \(\forall X \subseteq \mathbb{R}, ((X \neq \emptyset) \land (\exists y \in \mathbb{R}, \forall x \in X, x \leq y)) \Rightarrow (\exists z \in \mathbb{R}, z = \sup X) \)

5. Dokažite, da so vse trditve iz naloge 3 tautologije.

6. Poščite izjave \(A, B, C \), ki bodo dokazovale, da izjava

\[(A \Rightarrow (B \Rightarrow C)) \iff ((A \Rightarrow B) \Rightarrow C) \]

ni tautologija.

(a) \(((A \land B) \lor ((A \lor B) \land \neg (A \lor \neg B))) \iff (A \lor B) \)

(b) \(((\neg (A \land B) \lor C) \Rightarrow (C \land \neg B)) \iff (((A \land B) \lor C) \land \neg (B \land C)) \)

(c) \((B \land C) \Rightarrow \neg A \iff \neg C \Rightarrow (A \land B) \)

(d) \(((A \Rightarrow B) \Rightarrow ((A \land B) \lor C)) \lor ((A \Rightarrow B) \Rightarrow ((A \lor B) \land C)) \)

(e) \((((A \land B) \lor C) \Rightarrow (A \land B)) \lor (((A \lor B) \land C) \Rightarrow (A \land B)) \)

8. (a) Napišite kontrapozicijo in obrat trditve “Če je \(x < 0 \), tadaj je \(x^2 - x > 0 \).” Določite katere med temi tremi trditvami so resnične.

(b) V kateri množici ste obravnavali prejšnjo nalogo? Kako ste razumeli (nenapisane) kvantifikatorje?

(c) Enakو v primeru trditve “Če je \(x > 0 \), tadaj je \(x^2 - x > 0 \).”

9. Bodita \(A \) in \(B \) poljubni množici realnih števil. Napišite negacije naslednjih trditvev:

(a) Za vsak \(a \in A \) je res, da je \(a^2 \in B \).

(b) Za vsaj en \(a \in A \) je res, da je \(a^2 \in B \).

(c) Za vsak \(a \in A \) je res, da \(a^2 \notin B \).

(d) Za vsaj en \(a \notin A \) je res, da je \(a^2 \in B \).
2 Matematična indukcija

Z matematično indukcijo dokažite, da za vsako naravno število \(n \) velja:

1. \(1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \)
2. \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \)
3. \(1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n + 1)! - 1 \)
4. \(1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3} \)
5. \(\sin x + \sin 2x + \sin 3x + \cdots + \sin nx = \frac{\sin \left(\frac{(n+1)x}{2}\right)\sin \left(\frac{nx}{2}\right)}{\sin \left(\frac{x}{2}\right)} \), za poljubno realno število \(x \)
6. \(\cos \frac{\pi}{3} \cdot \cos \frac{2\pi}{3} \cdots \cos \frac{2^n \pi}{3} = \sqrt{3} \sin \frac{2^{n+1} \pi}{3} / 3 \cdot 2^n \)
7. \(\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{n}{2^n} = 2 - \frac{n + 2}{2^n} \)
8. \(2 \cdot 1 \cdot 1 + 3 \cdot 2 \cdot 2 + 4 \cdot 3 \cdot 2^2 + \cdots + (n + 1) \cdot n \cdot 2^{n-1} = 2^n \cdot (n^2 - n + 2) - 2 \)
9. \(\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} \cdots + \frac{n}{2^n} = 2 - \frac{n + 2}{2^n} \)
10. \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n + 1) = \frac{n(n + 1)(n + 2)}{3} \)
11. \(2 + 5 + 8 + \cdots + (3n - 1) = \frac{1}{2} n (3n + 1) \)
12. \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)} = 1 - \frac{1}{n + 1} \)
13. \(\sum_{i=1}^{n} (-1)^{i+1} i^2 = (-1)^{n-1} \frac{n(n + 1)}{2} \)
14. \(\sum_{i=1}^{n} 2^i = 2^{n+1} - 2 \)
15. \(\left(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n} \right)^2 + \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right)^2 + \cdots + \left(\frac{1}{n-1} + \frac{1}{n} \right)^2 + \left(\frac{1}{n} \right)^2 = \right) \)
16. \(\left(\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n} \right)^2 = \frac{1}{3} n(4n^2 - 1) \)
17. \(\sum_{i=1}^{n} (2i - 1)^2 = \frac{1}{3} n(4n^2 - 1) \)
18. \(\sum_{k=1}^{n} (9 + 4k) = 2n^2 + 11n \)
19. \(\sum_{i=1}^{n} \left(\frac{i(3i + 1)}{2} \right) = \frac{n(n + 1)^2}{2} \)
20. $2^n < n!$, če je $n > 3$
21. $10^9 + 10^1 + \ldots + 10^n < 10^{n+1}$
22. $2^n > n^2$, če je $n \geq 5$
23. $\left(1 + \frac{1}{n}\right)^n < 3$
24. $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n}$
25. $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}$
26. $2! \cdot 4! \cdot (2n)! \geq ((n+1)!)^n$
27. $2^n \leq 2^{n+1} - 2^{n-1} - 1$
28. $\sqrt{n}\sqrt{2n} + 2 + \sqrt{n}\sqrt{2n+1} - \sqrt{2n+1}\sqrt{2n} + 2 > 0$
29. $(1 + a)^n \geq 1 + na$, za vsa realna števila $a > -1$ (Bernoullijeva neenakost)
30. $|a_1 + a_2 + \ldots + a_n| \leq |a_1| + |a_2| + \ldots + |a_n|$, za poljubna realna števila a_1, a_2, \ldots, a_n
31. $\frac{1}{3^2} + \frac{1}{5^2} + \ldots + \frac{1}{(2n+1)^2} < \frac{1}{4}$
32. $a^n - 1 = (a-1)(a^{n-1} + a^{n-2} + \ldots + a + 1)$
33. število $11^{n+1} + 12^{2n-1}$ je deljivo s 133
34. število $3^{n+1} - 2n^2 + 13$ je deljivo s 4
35. število $7^n + 2^{n+2}$ je deljivo s 5
36. število 2^{2n+1} ima v desetičnem sistemu zadnjo števko enako 6
37. število $2^n + 15n - 1$ je deljivo s 3
38. število $7^n(3n + 1) - 1$ je deljivo z 9
39. $14 | (5 \cdot 2^{4n} - 7^{2n+1} - 19 \cdot 10^{2n} + 21^{n+1})$
40. $3 | (4^n - 1)$
41. $133 | (11^{n+1} + 12^{2n-1})$

Fibonaccijeva števila so definirana rekurzivno z: $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ za vsa naravna števila $n \geq 1$. Isto zaporedje (z enim členom več) dobimo z začetnima pogojo $F_0 = 0, F_1 = 1$. V nekaterih virih se pojavlja definicija, v kateri se začetna pogoja glasita $F_0 = 1, F_1 = 1$ — tako dobljeno zaporedje se razlikuje od našega (zamaknjeno je za eno mesto).

1. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

Ta trditev se imenuje Binetova formula.

2. Dokažite, da za vsak $n \in \mathbb{N}$ velja $F_{n-1} \cdot F_{n+1} = F_n^2 + (-1)^n$.
3. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja $\sum_{i=0}^{n} F_i^2 = F_n \cdot F_{n+1}$.

4. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja $F_0 + F_1 + \cdots + F_n = F_{n+2} - 1$.

5. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja $F_n < 2^n$.

6. Zaporedje je podano z rekurzivno formulo $a_{n+1} = 2a_n + 3a_{n-1}$ za vse $n \in \mathbb{N}$ in začetnima vrednostima $a_0 = 3$ in $a_1 = 1$. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja $a_n = 3^n + 2(-1)^n$.

7. Zaporedje je podano rekurzivno z: $a_1 = 2$, $a_2 = 3$ in $a_n = 3a_{n-1} - 2a_{n-2}$ za vse $n \geq 3$. Dokažite, da za vsak $n \in \mathbb{N}$ velja $a_n = 1 + 2^{n-1}$.

8. Zaporedje je podano rekurzivno z: $a_0 = 3$, $a_1 = 5$ in $a_n = a_{n-1}^2 - 2(a_{n-2} - 1)^2$ za vsi $n \geq 2$. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja $a_n = 1 + 2^{2n}$.

9. Zaporedje je definirano rekurzivno formulo $a_{n+1} = a_0 + a_1 + a_2 + \cdots + a_n + n + 1$ za vse $n \in \mathbb{N} \cup \{0\}$ in začetno vrednostjo $a_0 = 0$. Dokažite, da za vsak $n \in \mathbb{N}$ velja $a_n = 2^n - 1$.

10. Zaporedje je definirano rekurzivno z: $a_1 = 1$, $a_2 = 3$ in $a_n = a_{n-1} + a_{n-2}$ za vse $n \geq 3$. Dokažite, da za vsak $n \in \mathbb{N}$ velja $a_n < \left(\frac{7}{4}\right)^n$.

11. Zaporedje je podano z rekurzivno formulo $a_n = 3a_{n-2} + 2a_{n-3}$ in začetnimi vrednostmi $a_0 = 1, a_1 = 3$ in $a_2 = 7$. Dokažite, da za vsak $n \in \mathbb{N} \cup \{0\}$ velja

$$a_n = \left(\frac{5}{9} + \frac{2}{3}n\right)(-1)^n + \frac{14}{9}2^n.$$

12. Zaporedje je podano začetnimi vrednostmi $a_0 = 1, a_1 = 2, a_2 = 3$ ter z rekurzivno formulo $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ za vse $k \geq 3$. Dokažite, da velja $a_n \leq 2^n$ za vsak $n \in \mathbb{N} \cup \{0\}$.

13. Tla oblike pravokotnika velikosti $2 \times n$ tlakujemo s tlakovci oblike 2×1 in 2×2. Pokažite, da se število različnih tlakovanj, ki jih pri tem dobimo, da izračunati po rekurzivni formuli: $a_1 = 1, a_2 = 3, a_n = a_{n-1} + a_{n-2}$, za vse $n \geq 3$. Dokažite, da za vsak $n \in \mathbb{N}$ velja $a_n = \frac{2}{3}2^n + \frac{1}{3}(-1)^n$.

Še nekaj nalog o matematični indukciji:

1. Z matematično indukcijo dokažite, da za vsak $n \in \mathbb{N}$ velja $x_1, x_2, \cdots, x_n \in [a, b] \Rightarrow \frac{x_1 + x_2 + \cdots + x_n}{n} \in [a, b]$.

2. Z matematično indukcijo dokažite, da za vsak $n \in \mathbb{N}$ velja

$$\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}} = 2 \cos \frac{\pi}{2n+1},$$

če je število znakov $\sqrt{\cdots}$ na levi enako n.

3. Z matematično indukcijo dokažite, da za vsak $n \in \mathbb{N}$ obstaja $k \in \mathbb{N}$, tako da velja $(n+1)^3 - n^3 = 2k - 1$. (Razlika poljubnih dveh zaporednih kubov je vedno liho število.)

4. Dokažite, da za vsako liho naravno število n velja, da je $2^n + 1$ deljivo s 3 in da za vsako sodo naravno število n velja, da $2^n + 1$ ni deljivo s 3.

5. Dokažite, da za poljubno naravno število n in poljubnih n krožnic v ravnini velja, da lahko območja, na katera so te krožnice razdelile ravnino, pobarvamo z dvema barvama tako, da bo vsako območje pobarvano z eno barvo in da bosta poljubni dve sosednji območji pobarvani z različnima barvama. Območji sta sosednji, če imata skupen lok krožnice.
6. Dokažite, da n premic v ravnini, od katerih nobeni dve nista vzporedni in za katere velja, da se v vsaki točki ravnine sekata kvečjemu dve, razdeli ravnino na $\frac{n^2 + n + 2}{2}$ območij.

8. Tablico čokolade, sestavljajo kvadratki postavljeni v m vrstic in n stolpcev (kot običajno). Tablico bi radi razdelili na najmanjše kvadratke, pri čemer smo (kot običajno) uporabljali samo horizontalne ali omrežje vertikalne prelome (po črtah – vrsticah ali stolpcih). Pokažite, da vedno potrebujemo natanko mn prelomov, da razdelimo čokolado na najmanjše kvadratke.

9. Pokažite, da se da vsako naravno število n, $n \geq 12$, zapisati v obliki $n = 4x + 5y$, kjer sta $x, y \in \mathbb{N} \cup \{0\}$.

10. Dokažite, da je število diagonal v poljubnem n-kotniku enako $n(n-3)$.

11. Dokažite, da je v poljubnem konveksnem n-kotniku vsota vseh njegovih notranjih kotov enaka $(n-2) \cdot 180^\circ$.

12. Definirajmo zaporedje polinomov $P_n(x)$, $n \geq 0$, rekurzivno z $P_0(x) = 1$, $P_1(x) = x$, $P_{n+1}(x) = xP_n(x) - P_{n-1}(x)$ za $\forall n \geq 2$. Z matematično indukcijo dokažite, da za vse $n \in \mathbb{N} \cup \{0\}$ in vse $\varphi \in \mathbb{R}$, za katere je $\sin \varphi \neq 0$, velja $P_n(2 \cos \varphi) = \frac{\sin(n+1)\varphi}{\sin \varphi}$.

13. Naj bodo x_1, x_2, \ldots, x_n pozitivna realna števila. Dokažite, da velja $\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \cdots x_{n-1} \cdot x_n}$.

14. Z matematično indukcijo dokažite, da za vsako naravno število n velja: $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$.

15. Dokažite, da je produkt poljubnih treh zaporednih številk deljiv z 6 in produkt poljubnih štirih zaporednih števil deljiv z 24.

16. Dokažite, da vsak $n \in \mathbb{N}$ velja, da si lahko na šahovnici velikosti $2^n \times 2^n$ izberemo poljubno polje in tlakujemo preostanek z L-triomini (liki, sestavljenimi iz treh kvadratkov v obliki črke L).

17. Na zabavo je bilo povabljenih 10 parov. Gostitelj je vprašal vse prisotne, vključno z njegovo ženo, s koliko ljudi so se rokovali. Izkazalo se je, da se je vsak izmed vprašanih (gostitelj je izključen) rokoval z različnimi števili ljudi. Če predpostavimo, da se ni rekel ni rokoval s svojim partnerjem – možemo ali ženo, s koliko ljudmi se je rokovala gostiteljeva žena? Poščite posplošitev za primer n parov in jo dokažite s pomočjo matematične indukcije.

18. Vsak izmed n udeležencev srečanja ($n \geq 2$) se je natanko enkrat rokoval z vsakim izmed preostalih udeležencev. Poščite formulo za skupno število rokovanj in jo dokažite s pomočjo matematične indukcije.

1 Ena rešitev je prikazana v [16].
19. Naj bo \(P(n) \) trditev “Skozi poljubnih \(n \) točk v ravnini lahko potegnemo premico”. Ugotovite, kje je napaka v naslednjem “dokazu” trditev \(\forall n \in \mathbb{N}, P(n) \) z matematično indukcijo:

Baza indukcije: skozi eno točko očitno lahko potegnemo premico.

Korak indukcije: Naj bo \(n \) poljubno naravno število; predpostavimo, da je trditev \(P(n) \) resnična. Naj bo \(T_1, T_2, \ldots, T_n, T_{n+1} \) poljubnih \(n + 1 \) točk v ravnini. Po induktivni predpostavki obstaja premica \(p \), ki vsebuje točke \(T_1, T_2, \ldots, T_n \), in premica \(p' \), ki vsebuje točke \(T_2, \ldots, T_n, T_{n+1} \). Ker obe premici, \(p \) in \(p' \) vsebujeta točki \(T_2 \) in \(T_n \), z dvema točkama pa je premica enolično določena, velja \(p = p' \). Torej, \(p \) je premica, na kateri ležijo vse točke \(T_1, T_2, \ldots, T_n, T_{n+1} \). S tem je dokazano, da je trditev \(P(n+1) \) resnična.

20. Naj bo \(P(n) \): “Za poljubnih \(n \) realnih števil \(x_1, x_2, \ldots, x_n \) velja: \(\forall i, j \in \{1, 2, \ldots, n\}, x_i = x_j \).” Ugotovite, kje je napaka v naslednjem “dokazu” trditev \(\forall n \in \mathbb{N}, P(n) \) z matematično indukcijo:

Baza indukcije: velja \(x_1 = x_1 \).

Korak indukcije: Naj bo \(n \) poljubno naravno število; predpostavimo, da je trditev \(P(n) \) resnična. Naj bo \(x_1, x_2, \ldots, x_n, x_{n+1} \) poljubnih \(n + 1 \) realnih štev. Po induktivni predpostavki velja \(x_1 = x_2 = \cdots = x_n \) in \(x_2 = \cdots = x_n = x_{n+1} \). Ker je \(x_2 = x_n \), sledi \(x_1 = x_2 = \cdots = x_n x_{n+1} \). S tem je dokazano, da je trditev \(P(n+1) \) resnična.

21. Kaj je narobe z naslednjim “dokazom” trditev, da pri poljubnem pozitivnem realnem številu \(a \) za vsako naravno število \(n \) velja \(a^{n-1} = 1 \)?

Baza indukcije: za \(n = 1 \) dobimo \(a^{1-1} = a_0 = 1 \).

Korak indukcije: \(a^{(n+1)-1} = a^n = \frac{a^{n-1} \cdot a^{n-1}}{a^{n-2}} = \frac{1 \cdot 1}{1} = 1 \).

22. Kaj je narobe z naslednjim “dokazom” trditev, da za vsako naravno število \(n \) velja

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(n-1)n} = \frac{3}{2} - \frac{1}{n}.
\]

Baza indukcije: za \(n = 1 \) dobimo \(\frac{1}{2} = \frac{3}{2} - \frac{1}{1} \), kar je res.

Korak indukcije: za poljubni \(n \) dobimo iz induktivne predpostavke, da trditev velja za \(n \):

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(n-1)n} + \frac{1}{(n+1)(n+1)} = \frac{3}{2} - \frac{1}{n} + \frac{1}{n(n+1)} = \frac{3}{2} - \frac{1}{n} + \frac{1}{n+1}.
\]

(To, da je nekaj narobe, vidimo npr. iz tega, da je, na primer, za \(n = 6 \) leva stran enaka
\[
\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} = \frac{5}{6} \text{ desna pa } \frac{3}{2} - \frac{1}{6} = \frac{4}{3} \).

3 Metoda minimalnega protiprimera; Dirichletovo pravilo

1. Z metodo minimalnega protiprimera dokažite, da je \(\sqrt{2} \) iracionalno število (po zgledu Fermatovega dokaza z metodo neskončnega spusta).

2. Z metodo minimalnega protiprimera dokažite, da je \(\sqrt[n]{n} \) za \(n \in \mathbb{N} \) racionalno število natanko takrat, kadar je \(n \) popoln kvadrat (kvadrat nekega naravnega števila).

3. Z metodo minimalnega protiprimera dokažite: če je \(m > n \), kjer sta \(m \) in \(n \) poljubni naravni števili, tedaj ne obstaja nobena injektivna funkcija \(f : \{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, n\} \).
4. Z metodo minimalnega protiprimera dokažite: če je n poljubno naravno število in je M poljubna neprazna prava podmnožica množice \{1,2,\ldots,n\}, tedaj obstajata naravno število m, m < n, in bijekcija f : \{1,2,\ldots,m\} \rightarrow M.

6. Pokažite, da imata v poljubni skupini ljudi vsaj dve osebi enako mnogo znancev. Pri tem predpostavljamo, da so poznanstva obojestranska.

7. V sobi s površino 5 m² položimo 9 preprog. Vsaka ima površino 1 m² in je poljubne oblike. Dokažite, da obstajata preprog, ki se prekrivata z vsaj \frac{1}{9} m².

8. Pokažite, da se med števili oblike 1111...1111 nahajajo večkratniki vseh števil, tujih z 2 in 5.

9. Pokažite, da če poljubno izberemo 5 točk v enotskem kvadratu (v notranjosti ali na robu), da tedaj med njimi obstajata dve točki, ki se nahajata na razdalji manjši od \frac{\sqrt{2}}{2}.

10. Pokažite, da lahko v poljubni množici desetih različnih dvomestnih štev il izberemo dve disjunktni podmnožici, za kateri velja, da je vsota vseh elementov ene izmed teh podmnožic enaka vsoti vseh elementov druge.

11. Določite n tako, da bo za vsako množico X devetih različnih naravnih števil z največjim elementom n veljalo, da vsebuje dve disjunktni podmnožici A in B, za kateri bo veljalo s(A) = s(B). Pri tem z s(Y) označujemo vsoto vseh elementov poljubne podmnožice Y množice X.

12. Naj bo M \subseteq \{1,2,\ldots,2n\} in naj M vsebuje n + 1 elementov. Dokažite, da tedaj v M obstajata taki dve števili, da prvo deli drugo.

14. Naj bo n liho število in A podmnožica množice celih števil \mathbb{Z} z \frac{n+3}{2} elementi. Dokažite, da množica A vsebuje tak par števil, da je bodisi njuna vsota bodisi njuna razlika deljiva z n.

15. Naj bo \(a_1,a_2,\ldots,a_n\) urejena n-terica celih števil. Dokažite, da obstajata k in \ell, tako da je \(1 \leq k < \ell \leq n\) in da je vsota \(\ell \sum_{i=k}^{\ell} a_i\) deljiva z n.

17. V ravnini je podanih 5 točk s celoštevilskimi koordinatami. Dokažite, da razpoložišče vsaj ene izmed daljic s krajščema v teh točkah tudi ima celoštevilski koordinati.

18. V prostoru je podanih 9 točk s celoštevilskimi koordinatami. Dokažite, da razpoložišče vsaj ene izmed daljic s krajščema v teh točkah tudi ima celoštevilke koordinate.

19. V enotskem enakostraničnem trikotniku imamo \(4^k + 1\) različnih točk. Dokažite, da tedaj med njimi obstajata točki, ki sta med seboj oddaljeni za kvečjemu \(1/2^k\).

21. Tablico dimenzije \(5 \times 5\) poljubno zapolnimo s števili 1,2, 3. Dokažite, da sta vsaj dve izmed vsot števil po vrsticah, stolpcih oziroma obeh diagonalah enaki.
22. Znanstveni eksperiment je trajal 4 tedne. Vsak dan so znanstveniki zabeležili vsaj eno pojavitev iskanega elementa, vendar v nobenem izmed 4 tednov ne več kot 10 pojavitev. Dokažite, da so v nekaj zaporednih dneh zabeležili natanko 15 pojavitev.

24. Dokažite, da med 6 osebam vedno obstajajo ali 3 osebe, ki se medsebojno poznajo ali pa obstajajo 3 osebe, med katerimi se nobeni dve osebi ne poznata.

25. Naj bo \(n \) poljubno naravno število. Dokažite, da poljubno zaporedje \(n^2 + 1 \) različnih celih številk vsebuje monotono podzaporedje dolžine \(n + 1 \).

26. Nekoliko bolj splošna formulacija prejšnje naloge:

Dokažite, da v vsakem zaporedju \(x_1, x_2, \ldots, x_{mn+1} \) različnih realnih številk obstaja ali naraščajoče podzaporedje dolžine \(m + 1 \) (\(x_{i_1} < x_{i_2} < \cdots < x_{i_{m+1}} \), kjer je \(i_1 < i_2 < \cdots < i_{m+1} \)), ali padajoče podzaporedje dolžine \(n + 1 \) (\(x_{j_1} > x_{j_2} > \cdots > x_{j_{n+1}} \), kjer je \(j_1 < j_2 < \cdots < j_{n+1} \)), ali oboje.

27. Naj bo \(n \) poljubno naravno število. Dokažite, da obstajata različna naravna številka \(a \) in \(b \), tako da velja \(10 \mid n^a - n^b \).

28. Dokažite, da v poljubnem zaporedju naravnih številk \(a_1, \ldots, a_n \), \(n \geq 5 \), obstaja podzaporedje \(a_{j_1}, \ldots, a_{j_k} \), za katerega velja, da če nekaj členov seštejemo in preostale člene tega zaporedja odštejemo, dobimo rezultat, ki je deljiv z \(n^2 \).

29. Dokažite, da je zaporedje zadnjih 4 števk členov zaporedja 6, 6², 6³, 6⁴, \ldots periodično.

30. V zaporedju 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, \ldots je vsak člen od tretjega naprej enak ostanku, ki ga dobimo pri deljenju vsote prejšnjih dveh členov s številom 10 (za vse \(n \geq 3 \) velja \(a_n \equiv a_{n-1} + a_{n-2} \pmod{10} \) in \(a_n \in \{0, 1, 2, \ldots, 8, 9\} \)). Dokažite, da je to zaporedje periodično.

(a) Najmanj koliko bonbonov moramo izbrati, da bo zagotovljeno, da smo izbrali vsaj dva bonbona iste barve?

(b) Najmanj koliko bonbonov moramo izbrati, da bomo zagotovo izbrali vsaj dva modra bonbona?

32. Najmanj koliko ljudi se mora srečati v skupini, da bo zagotovljeno, da sta se dva izmed njih rodila na enak dan v tednu in v istem mesecu (lahko v različnih letih).

33. Dokažite, da v poljubni množici, ki vsebuje 7 celih številk, obstajata dve števili, katerih vsota ali razlika je deljiva z 10.

34. V enakostraničnem trikotniku s stranico dolžine 1 imamo \(4^k + 1 \) različnih točk. Dokažite, da med njimi obstajata točki, ki sta med seboj oddaljeni za kvečjemu \(1/2^k \).

35. Naj bo \(M \subseteq \{1, 2, \ldots, 2n\} \) in naj \(M \) vsebuje \(n + 1 \) elementov. Dokažite, da tedaj v \(M \) obstajata taki dve števili, da prvo deli drugo.

36. Pokažite, da se vsako leto najmanj enkrat pojavi petek trinajsti (13. dan v mesecu, ki se zgodi na petek). Pokažite še, da se to lahko zgodi največ trikrat v istem letu.
37. 41 trdnjav postavimo na šahovnico velikosti 10×10. Dokažite, da potem obstaja 5 trdnjav, ki se paroma ne napadajo. Pri tem velja, da trdnjava napada drugo trdnjavo, če stoji v isti vrsti ali stolpcu kot dana figura.

4 Kongruenčne relacije

1. Določite vsa cela števila \(x \) med \(-22\) in \(22\) za katere velja \(x \equiv 2 \pmod{3} \).

2. Določite vsa cela števila \(x \) med \(-50\) in \(50\) za katere velja \(x \equiv 5 \pmod{7} \).

3. Na množici \(A = \{ -1000, -200, -126, -12, -3, -2, -1, 0, 1, 2, 3, 12, 126, 200, 1000 \} \) je definirana ekvivalenčna relacija \(\equiv \pmod{6} \). Določite njene ekvivalenčne razrede relacije.

4. Koliko elementov vsebuje največji ekvivalenčni razred relacije \(\equiv \pmod{5} \) definirane na množici \(B = \{ ((-1)^n \cdot 2^n : 0 \leq n \leq 12 \} \)?

5. Določite ostanek \(x \) pri deljenju s \(7\).

6. Določite ostanek \(x \) pri deljenju s \(4\).

7. Dokažite, da za poljubno liho \(a \), velja \(a^2 \equiv 1 \pmod{8} \).
5 Ekvivalenčne relacije

1. Katere izmed naslednjih relacij so ekvivalenčne relacije? V primeru, da podana relacija ni ekvivalenčna relacija, ugotovite katere izmed treh lastnosti, iz definicije ekvivalenčne relacije (refleksivnost, simetričnost, tranzitivnost) so izpolnjene. Vse odgovore je potrebno utemeljiti.

(a) Na množici \mathbb{R}^2 je definirana relacija \approx s predpisom: $A \approx B$ natanko takrat, kadar velja, da točki A in B ležita na isti premici skozi izhodišče.

(b) Na množici $\mathbb{R}^2 \setminus \{(0,0)\}$ je definirana relacija \approx s predpisom: $A \approx B$ natanko takrat, kadar velja, da točki A in B ležita na isti premici skozi izhodišče.

(c) Na množici \mathbb{R}^2 je definirana relacija \equiv s predpisom: $(a,b) \equiv (c,d)$ natanko takrat, kadar velja $a^2 + b^2 = c^2 + d^2$.

(d) Naj bo X neprazna množica. Na množici vseh podmnožic množice X je definirana relacija \equiv s predpisom: $A \equiv B$ natanko takrat, kadar velja $A \not\subset B$ ali $B \not\subset A$.

(e) Na množici vseh funkcij $f : \mathbb{R} \to \mathbb{R}$ je definirana relacija \sim na naslednji način: $f \sim g$ natanko takrat, kadar velja, da se funkciji f in g razlikujeta za konstanto (obstaja tako realno število c, da velja $f(x) = g(x) + c$ za vse $x \in \mathbb{R}$).

2. Na množici $\mathbb{N} \times \mathbb{N}$ je definirana relacija R s predpisom

$$(a,b)R(c,d) \text{ def } \iff \{a,b\} \cap \{c,d\} \not= \emptyset.$$ (a) Poišcite vsa naravna števila n, za katera velja $(n,1)R(2,3)$.

(b) Dokažite, da je relacija R refleksivna in simetrična.

(c) S primerom pokažite, da relacija R ni tranzitivna.

3. V množici kompleksnih številk \mathbb{C} vpeljemo relacijo \sim takole:

$$u \sim v \text{ def } \iff i(u - v) \in \mathbb{R}.$$ Preprečajte se, da je \sim ekvivalenčna relacija na množici \mathbb{C} in poišcite njene ekvivalenčne razrede.

4. Na množici $M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ je definirana relacija \sim s predpisom $(a,b) \sim (c,d)$ natanko takrat, kadar velja $ad = bc$. Pokažite, da je \sim ekvivalenčna relacija.

5. Definiramo, da sta točki $(x_1,y_1), (x_2,y_2)$ ravnine ekvivalentni, če velja $y_1 - x_1^2 = y_2 - x_2^2$. Preverite, da je dobljena relacija zares ekvivalenčna in določite ekvivalenčne razrede.

6. Na množici \mathbb{R} je definirana relacija \sim na naslednji način: $a \sim b$ velja natanko takrat, kadar obstaja neničen polinom P z realnimi koeficienti, tako da velja $P(a) = P(b) = 0$. Dokažite, da je \sim ekvivalenčna relacija in določite \mathbb{R}/\sim.

7. Na množici \mathbb{R}^2 je definirana relacija \sim s predpisom: $(a,b) \sim (c,d)$ natanko tedaj, ko velja $|a| + |b| = |c| + |d|$. Pokažite, da je relacija \sim ekvivalenčna relacija. Določite (geometrijsko opisite) ekvivalenčni razred, ki vsebuje točko $(1,0)$.

8. Naj bo \sim relacija na \mathbb{R}, definirana s formulo

$$\forall x, y \in \mathbb{R}, x \sim y \text{ def } x - y \in \mathbb{Z}.$$ Dokažite, da je \sim ekvivalenčna relacija.

9. Naj bo \sim relacija na \mathbb{R}, definirana s formulo

$$x \sim y \text{ def } x - y \in \mathbb{Q}.$$ Dokažite, da je \sim ekvivalenčna relacija.
10. Naj bo \sim relacija na \mathbb{R}, definirana s formulo
\[
\forall x, y \in \mathbb{R}, \ x \sim y \iff \sin x - \sin y \in \mathbb{Z}.
\]
Dokažite, da je \sim ekvivalenčna relacija.

11. Na \mathbb{R} je definirana relacija \sim:
\[
\forall x, y \in \mathbb{R}, \ x \sim y \iff x^7 + x^5 + x^3 + x = y^7 + y^5 + y^3 + y.
\]
Dokažite, da je \sim ekvivalenčna relacija.

12. Naj bo \sim relacija na \mathbb{R}^2, definirana s formulo
\[
\forall x, y, u, v \in \mathbb{R}, \ (x, y) \sim (u, v) \iff x^2 + y^2 = u^2 + v^2.
\]
Dokažite, da je \sim ekvivalenčna relacija ter določite $[(0, 1)]$ in $[(0, 0)]$. Pokažite, da obstaja bijekcija $f : \mathbb{R}^2/\sim \rightarrow [0, +\infty)$

13. Naj bo \sim ekvivalenčna relacija na \mathbb{R}, podana s
\[
x \sim y \iff x = y \lor \sin x \cdot \sin y > 0.
\]
Dokažite, da je \sim ekvivalenčna relacija in določite faktorsko množico \mathbb{R}/\sim.

14. Na množici celih številk \mathbb{Z} je definirana relacija \sim s predpisom
\[
m \sim n \iff m^2 \equiv n^2 \pmod{3}.
\]
Pokažite, da je \sim ekvivalenčna relacija. Določite ekvivalenčne razrede relacije \sim in število elementov faktorske množice \mathbb{Z}/\sim.

15. Na množici naravnih številk \mathbb{N} je definirana relacija \sim s predpisom:
\[
m \sim n \iff m^2 \equiv n^2 \pmod{10}.
\]
Pokažite, da je \sim ekvivalenčna relacija. Kolišna je moč faktorske množice \mathbb{N}/\sim. Določite še ekvivalenčne razrede relacije \sim.

16. Na množici naravnih številk \mathbb{N} je definirana relacija \simeq s predpisom:
\[
m \simeq n \iff m^3 \equiv n^3 \pmod{10}.
\]
Pokažite, da je \simeq ekvivalenčna relacija. Kolišna je moč faktorske množice \mathbb{N}/\simeq. Določite še ekvivalenčne razrede relacije \simeq.

17. Na množici naravnih številk \mathbb{N} je definirana relacija \preceq s predpisom:
\[
m \preceq n \iff m^4 \equiv n^4 \pmod{10}.
\]
Pokažite, da je \preceq ekvivalenčna relacija. Določite ekvivalenčne razrede relacije \preceq in število elementov faktorske množice \mathbb{N}/\preceq.

18. Naj bo \sim relacija na \mathbb{R}, za katere velja: $x \sim y$ natanko takrat, kadar obstaja končna množica A, tako da je $x \in A$ in $y \in A$. Dokažite, da je \sim ekvivalenčna relacija in določite \mathbb{R}/\sim.

19. Bodita S in S' naslednji podmnožici ravnine:
\[
S = \{(x, y) : y = x + 1 \& 0 < x < 2\},
\]
\[
S' = \{(x, y) : y - x \in \mathbb{Z}\}.
\]
(a) Pokažite, da je S' ekvivalentna relacija na \mathbb{R} in da je $S \subseteq S'$. Določite ekvivalentne razrede relacije S'.

(b) Dokažite, da je presek poljubne družine ekvivalentnih relacij na množici A ekvivalentna relacija na množici A.

(c) Določite ekvivalentno relacijo T na \mathbb{R}, ki je presek vsek dveh ekvivalentnih relacij na \mathbb{R}, ki imajo S za podmnožico. Določite ekvivalentne razrede relacije T.

20. Na množici $\mathbb{Z} \setminus \{0\}$ sta definirani relaciji R in S na naslednji način: $xRy \iff xy > 0$ in $xSy \iff 2 \mid xy$. Ugotovite, katera od teh dveh relacij je ekvivalentna in določi njeno faktorsko množico. Za relacijo, ki ni ekvivalentna, pojasnite zakaj ni.

22. Naj bo X neprazna množica in $x \in X$. Na potenčni množici $\mathcal{P}(X)$ je definirana relacija R s predpisom: $ARB \iff (x \in A \cap B) \vee (x \in (A \cup B)^c)$. Pri tem za poljubno podmnožico Y množice X oznaka Y^c pomeni komplement množice Y. Pokažite, da je R ekvivalentna relacija na $\mathcal{P}(X)$.

23. Na množici \mathbb{N} sta definirani relaciji S in L na naslednji način:

\[
mSn \iff m + n \text{ je sodo število} \quad \text{in} \quad mLn \iff m + n \text{ je liho število}.
\]

Ugotovite, katera od teh dveh relacij je ekvivalentna in določi njeno faktorsko množico. Za relacijo, ki ni ekvivalentna, pojasnite zakaj ni.

24. Na množici naravnih števil \mathbb{N} je definirana relacija R na naslednji način:

\[(a, b) \in R \iff 5 \mid (3a + 2b)\].

Pokažite, da je R ekvivalentna relacija. Opišite ekvivalentne razrede relacije R. Določite $|6|_R \cap C$, kjer je $C = \{c \in \mathbb{N} : c \leq 100\}$. (Namig: dejstvo, da število 5 deli vsoto dveh števil se lahko zapiše s pomočjo kongruenčne relacije).

25. Na množici $M \subseteq \mathbb{N} \times \mathbb{N}$ je definirana relacija P s predpisom $(a, b)P(c, d) \iff a + d = b + c$. Pokažite, da je P ekvivalentna relacija. Naj bo $M = \{(0, 2), (1, 2), (2, 4), (3, 4) \ldots (2n, 2n + 2), (2n + 1, 2n + 2) \ldots \}$. Določite ekvivalentne razrede, na katere razbije relacija P to množico M in določite še faktorsko množico.

26. Na množici $A = \{n \in \mathbb{N} : 1 \leq n \leq 20\}$ sta definirani relaciji P in S: $xPy \iff 2 \mid (x + y)$ in $xSy \iff 3 \mid (x - y)$. Pokažite, da je relacija R, definirana s predpisom $xRy \iff (xPy) \wedge (xSy)$, ekvivalentna relacija na množici A ter določi ekvivalentni razred elementa 2.

27. Relacija S nad množico realnih števil \mathbb{R} je definirana takole: xSy natanko tedaj, ko je $x^2 - y^2 = 0$. Pokažite, da je S ekvivalentna relacija in določite ekvivalentni razred s predstavnikom 1.

28. Na množici $\mathbb{N} \times \mathbb{N}$ je definirana relacija R s predpisom $(a, b)R(c, d) \iff |a - c| = |b - d|$. (a) Poščite vsa števila m in n, za katera velja $(m, 4)R(3, 2)$ in $(3, n)R(6, 5)$.

14
(b) Dokažite, da je relacija R refleksivna in simetrična.
(c) S primerom pokažite, da relacija R ni tranzitivna. Namig: pomagajte si s točko a).

29. Na množici A naj bo definirana relacija \sim. Pokažite, da je \sim ekvivalenčna relacija natanko tedaj, ko je refleksivna in ko za vsak $x, y, z \in A$ velja $x \sim y \land y \sim z \Rightarrow z \sim x$.

30. Naj bosta podani množici A in B, kjer je $B \subseteq A$. Naj bo \sim_1 ekvivalenčna relacija na množici A. Na množici B definiramo relacijo \sim_2 s formulo:
\[\forall b_1, b_2 \in B, b_1 \sim_2 b_2 \iff b_1 \sim_1 b_2. \]

Dokažite, da je \sim_2 ekvivalenčna relacija.

31. Podana je množica $W = \{1, 2, 3, 4\}$. Razmislite o naslednjih relacijah in navedite katere od njih so ali niso refleksivne, simetrične oziroma tranzitivne.

(a) $R_1 = \{(1, 1), (1, 2)\}$
(b) $R_2 = \{(1, 1), (2, 3), (4, 1)\}$
(c) $R_3 = \{(1, 3), (2, 4)\}$
(d) $R_4 = \{(1, 1), (2, 2), (3, 3)\}$
(e) $R_5 = W \times W$

32. V ravnini je dana premica s. Naj bo X množica vseh od s različnih premic v tej ravnini, ki sekajo s. V X vpeljemo relacijo R takole:
\[pRq \iff p \cap q \cap s \neq \emptyset. \]

(a) Pokažite, da je R ekvivalenčna relacija na X.
(b) Kaj je ekvivalenčni razred posamezne premice $p \in X$?

33. Na množici \mathbb{R} je defina binarna relacija R s formulo:
\[\forall x, y \in \mathbb{R}, x \sim y \iff x + 3 \leq y. \]

Ali je podana relacija refleksivna, simetrična, tranzitivna?

34. Naj bosta R in R' relacije v množici A. Dokažite ali ovrzite naslednje trditve:

(a) R je simetrična in R' je simetrična $\Rightarrow R \cup R'$ je simetrična.
(b) R je refleksivna in R' je poljubna $\Rightarrow R \cup R'$ je refleksivna.
(c) R je tranzitivna in R' je tranzitivna $\Rightarrow R \cup R'$ je tranzitivna.

35. Na množici $A = \mathbb{Z} \times \mathbb{Z}$ definiramo relacijo \sim s predpisom:
\[(a_0, b_0) \sim (a_1, b_1) \iff (a_0 \equiv a_1 \pmod{2}) \land (b_0 \equiv b_1 \pmod{4}). \]

Pokažite, da je \sim ekvivalenčna relacija na množici A. Opisite ekvivalenčni razred $[(2, 19)]$ in določite moč faktorske množice A/\sim.

36. Naj bo C binarna relacija na množici A in $A_0 \subseteq A$. Zošitev relacije C na množico A_0 je relacija $C \cap (A_0 \times A_0)$. Dokažite, da je zošitev ekvivalenčne relacije znova ekvivalenčna relacija.

37. Dokažite, da je relacija $R \subseteq A \times A$ ekvivalenčna natanko takrat, ko je refleksivna in za $\forall x, y, z \in A$ velja
\[xRy \land yRz \Rightarrow zRx. \]
38. Naj bo \(f : A \rightarrow B \) surjektivna funkcija. Na množici \(A \) definiramo relacijo \(\sim \) s formulo:
\[a \sim b \iff f(a) = f(b). \]
Dokažite, da je \(\sim \) ekvivalenčna relacija in da med faktorsko množico (množico vseh ekvivalenčnih razredov) in množico \(B \) obstaja bijektivna preslikava.

39. Naj bosta \(\sim_1 \) in \(\sim_2 \) podani ekvivalenčni relaciji na \(X \).

(a) Ugotovite, ali je relacija \(R \), definirana s formulo
\[\forall x, y \in X, \ xRy \iff (x \sim_1 y) \lor (x \sim_2 y), \]
ekvivalenčna relacija na \(X \).

(b) Ugotovite, ali je relacija \(S \), definirana s formulo
\[\forall x, y \in X, \ xSy \iff (x \sim_1 y) \land (x \sim_2 y), \]
ekvivalenčna relacija na \(X \).

40. Naj bo \(\sim_1 \) ekvivalenčna relacija na \(X \) in \(\sim_2 \) ekvivalenčna relacija na \(Y \).

(a) Na \(X \times Y \) definiramo relacijo \(\sim \) s formulo
\[\forall x_1, x_2 \in X, \forall y_1, y_2 \in Y, \ (x_1, y_1) \sim (x_2, y_2) \iff (x_1 \sim_1 x_2) \land (y_1 \sim_2 y_2). \]
Dokažite, da je \(\sim \) ekvivalenčna relacija na \(X \times Y \).

(b) Dokažite, da velja
\[\forall x \in X, \forall y \in Y, \ [(x, y)] = [x]_1 \times [y]_2, \]
ker je
\[[(x, y)] \) ekvivalenčni razred elementa \((x, y)\) glede na relacijo \(\sim \),
\[[x]_1 \) ekvivalenčni razred elementa \(x\) glede na relacijo \(\sim_1 \),
\[[y]_2 \) ekvivalenčni razred elementa \(y\) glede na relacijo \(\sim_2 \).

41. Zapišite vse možne ekvivalenčne relacije na množici s štirimi elementi.

42. Zapišite vse možne ekvivalenčne relacije z dvema ekvivalenčnima razredoma na množici s petimi elementi.

43. Določite ekvivalenčno relacijo \(R \) (vse pare ekvivalentnih elementov) na množici \(A = \{1, 2, 3, 4, 5, 6\} \), če je \(A/R = \{\{1, 6\}, \{2, 4, 5\}, \{3\}\} \).

6 Padajoče in naraščajoče potence, Stirlingova števila

Padajoče potence so definirane rekurzivno z \(x^0 = 1 \), \(x^{n+1} = x^n \cdot (x - n) \), naraščajoče pa z \(x^1 = 1 \), \(x^{n+1} = x^n \cdot (x + n) \). Stirlingova števila (druge vrste) \(\binom{n}{k} \) so definirana z rekurzivno formulo
\[\binom{n + 1}{k} = k \binom{n}{k} + \binom{n}{k - 1} \]
in začetnimi vrednostmi \(\binom{n}{0} = 1 \), \(\binom{0}{0} = 1 \), \(\binom{n}{0} = 0 \) za \(n > 0 \).

1. Izračunajte: \(7^2, 2^7, 3^2, 1^5, 2^2, 3^k \) (razlikujte primera \(k \leq n \) in \(k > n \)).

2. Dokažite, da za vsako naravno število in za poljubni realni števili \(x \) in \(y \) velja:
\[(a) \ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}; \]
(b) \((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k};\)

(c) \((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k};\)

3. Dokažite:
 (a) \(x^k - (x - 1)^k = k(x - 1)^{k-1};\)
 (b) \(kx^k = x \left[x^k - (x - 1)^k\right];\)
 (c) \(kx^k = x \cdot x^k - x^{k+1};\)
 (d) \((x + 1)^{\overline{k}} - x^{\overline{k}} = k(x + 1)^{k-1};\)
 (e) \(kx^{\overline{k}} = x \left[(x + 1)^{\overline{k}} - x^{\overline{k}}\right];\)
 (f) \(kx^{\overline{k}} = x^{\overline{k+1}} - x \cdot x^{\overline{k}};\)
 (g) \(x^k = (-1)^n (-x)^{\overline{k}}.\)

4. Izračunajte: \(\{n\}_1\), vse \(\{2\}_k\), vse \(\{3\}_k\), vse \(\{4\}_k\), vse \(\{5\}_k\).

5. Dokažite:
 (a) \(\sum_{k=0}^{n} \binom{n}{k} x^k = x^n;\)
 (b) \(\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} x^k = x^n.\)

6. Dokažite:
 (a) \(\sum_{k=0}^{m} \binom{m}{k} k^n(-1)^{m-k} = m! \binom{n}{m};\)
 (b) \(\sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k} = \binom{n+1}{m+1}.\)
 (c) \(\sum_{k=0}^{m} \binom{n+k}{k} = \binom{m+n+1}{m}.\)

Literatura

[14] Dodatna gradiva Oddelka za matematiko in računalništvo FNM:
 http://matematika-racunalnistvo.fnm.uni-mb.si/dodatna_gradiva.html

